成人之美,进学有为——学历提升!
您现在的位置:成考频道  > 技巧心得  > 2022年成人高考理科《数学》考点:奇偶性与单调性

2022年成人高考理科《数学》考点:奇偶性与单调性

来源:     时间:2022年07月22日
分享:

最近很多同学问奇偶性与单调性!今天诚为径成考网就来给大家详细介绍一下,希望对大家能有所帮助!

  函数的单调性、奇偶性是成人高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。

  难点磁场

  已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.

  案例探究

  [例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.

  命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.

  知识依托:主要依据函数的性质去解决问题.

  错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.

  技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.

  解:由 且x≠0,故0

  又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,

  ∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2

  ∴B=A∪{x|1≤x≤ }={x|1≤x< },又g(x)=-3x2+3x-4=-3(x- )2- 知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.

  [例2]已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0, ]都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由.

  命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.

  知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.

  错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.

  技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.

  解:∵f(x)是R上的奇函数,且在[0,+∞)上是增函数,∴f(x)是R上的增函数.于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m),

  即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0.

  设t=cosθ,则问题等价地转化为函数g(t)=t2-mt+2m-2=(t- )2- +2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正.

  ∴当 <0,即m<0时,g(0)=2m-2>0 m>1与m<0不符;

  当0≤ ≤1时,即0≤m≤2时,g(m)=- +2m-2>0

  4-2

  当 >1,即m>2时,g(1)=m-1>0 m>1.∴m>2

  综上,符合题目要求的m的值存在,其取值范围是m>4-2.

  锦囊妙计

  本难点所涉及的问题以及解决的方法主要有:

  (1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.

  (2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.

以上便是关于奇偶性与单调性的详细介绍了,如果对地区成考还有什么不理解的欢迎与诚为径成考网联系,我们的老师都会为大家解答!我们每天都会更新成考内容,欢迎收藏本站!

如需上文所提附件,请与诚为径老师联系,还有免费习题和真题供大家练习!

 

  感谢您阅读2022年成人高考理科《数学》考点:奇偶性与单调性,本文出自:诚为径成考网,转载需带上本文链接地址:https://chengkao.cwjedu.com/jqxd/18690

温馨提示:
因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
课程专业名称 班型 查看课程
成考高起本辅导班(文科类) 全科全程班 试听目录
成考专升本辅导班(教育类) 全科全程班 试听目录
成考专升本辅导班(艺术类) 全科全程班 试听目录
成考专升本辅导班(理工类) 全科全程班 试听目录
成考高起专辅导班(语数英)(文) 全科全程班 试听目录
成考专升本辅导班(经管/药学类) 全科全程班 试听目录
成考高起本辅导班(理科类) 全科全程班 试听目录
成考专升本辅导班(农学类) 全科全程班 试听目录
成考专升本辅导班(医学类) 全科全程班 试听目录
成考专升本辅导班(文史类) 全科全程班 试听目录
课程专业名称 班型 查看课程
成考高起专英语(精讲班) 课程精讲班 试听目录
成考专升本民法(精讲班) 课程精讲班 试听目录
成考专升本高等数学一(精讲班) 课程精讲班 试听目录
成考高起专语文(精讲班) 课程精讲班 试听目录
成考高升本数学(理)(精讲班) 课程精讲班 试听目录
成考高升本物理化学(精讲班) 课程精讲班 试听目录
成考专升本生态学基础(精讲班) 课程精讲班 试听目录
成考高升本数学(文)(精讲班) 课程精讲班 试听目录
成考专升本政治(精讲班) 课程精讲班 试听目录
成考高起专数学(理)(精讲班) 课程精讲班 试听目录

学历问题咨询

咨询老师

最近很多同学问奇偶性与单调性!今天诚为径成考网就来给大家详细介绍一下,为方便同学们阅读和理解,希望对大家能有所帮助!...

关于我们 联系我们 用户协议 网站地图

联系地址:湖南省长沙市雨花区韶山南路123号华翼府A座2628
版权所有:湖南晨润教育科技有限公司  出版物经营许可证:第4301042021097号

免责说明:本站部分内容由诚为径教育从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。