成人之美,进学有为——学历提升!
您现在的位置:成考频道  > 技巧心得  > 2021年成人高考高起点数学考前复习资料7

2021年成人高考高起点数学考前复习资料7

来源:     时间:2022年06月28日
分享:

最近很多同学问2021年成人高考高起点数学考前复习资料7!今天诚为径成考网就来给大家详细介绍一下,希望对大家能有所帮助!

2021年成人高考高起点数学考前复习资料7

2021年成人高考高起点数学考前复习资料7

求解函数解析式

求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.

●难点磁场

(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).

●案例探究

[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式.

(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式.

命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.

知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.

错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.

技巧与方法:(1)用换元法;(2)用待定系数法.

解:(1)令t=logax(a>1,t>0;0

因此f(t)= (at-a-t)

∴f(x)= (ax-a-x)(a>1,x>0;0

(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c

得 并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.

[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.

命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.

错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.

技巧与方法:合理进行分类,并运用待定系数法求函数表达式.

解:(1)当x≤-1时,设f(x)=x+b

∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.

(2)当-1

∵抛物线过点(-1,1),∴1=a·(-1)2+2,即a=-1

∴f(x)=-x2+2.

(3)当x≥1时,f(x)=-x+2

综上可知:f(x)= 作图由读者来完成.

●锦囊妙计

本难点所涉及的问题及解决方法主要有:

1.待定系数法,如果已知函数解析式的构造时,用待定系数法;

2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;

3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);

另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.

相关阅读:

2021年成人高考高起点数学(文)真题及答案

2021年成人高考高起点数学(理)真题及答案

以上便是关于2021年成人高考高起点数学考前复习资料7的详细介绍了,如果对地区成考还有什么不理解的欢迎与诚为径成考网联系,我们的老师都会为大家解答!我们每天都会更新成考内容,欢迎收藏本站!

如需上文所提附件,请与诚为径老师联系,还有免费习题和真题供大家练习!

 

  感谢您阅读2021年成人高考高起点数学考前复习资料7,本文出自:诚为径成考网,转载需带上本文链接地址:https://chengkao.cwjedu.com/jqxd/17860

温馨提示:
因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
课程专业名称 班型 查看课程
成考专升本辅导班(中医药类) 全科全程班 试听目录
成考高起专辅导班(语数英)(文) 全科全程班 试听目录
成考高起专辅导班(语数英)(理) 全科全程班 试听目录
成考专升本辅导班(文史类) 全科全程班 试听目录
成考专升本辅导班(理工类) 全科全程班 试听目录
成考专升本辅导班(法学类) 全科全程班 试听目录
成考高起本辅导班(文科类) 全科全程班 试听目录
成考专升本辅导班(艺术类) 全科全程班 试听目录
成考专升本辅导班(教育类) 全科全程班 试听目录
成考高起本辅导班(理科类) 全科全程班 试听目录
课程专业名称 班型 查看课程
成考专升本民法(精讲班) 课程精讲班 试听目录
成考高升本物理化学(精讲班) 课程精讲班 试听目录
成考高升本语文(精讲班) 课程精讲班 试听目录
成考高起专英语(精讲班) 课程精讲班 试听目录
成考专升本高等数学一(精讲班) 课程精讲班 试听目录
成考专升本高等数学二(精讲班) 课程精讲班 试听目录
成考高升本历史地理(精讲班) 课程精讲班 试听目录
成考专升本医学综合(精讲班) 课程精讲班 试听目录
成考专升本生态学基础(精讲班) 课程精讲班 试听目录
成考高升本英语(精讲班) 课程精讲班 试听目录

学历问题咨询

咨询老师

最近很多同学问2021年成人高考高起点数学考前复习资料7!今天诚为径成考网就来给大家详细介绍一下,为方便同学们阅读和理解,希望对大家能有所帮助!...

关于我们 联系我们 用户协议 网站地图

联系地址:湖南省长沙市雨花区韶山南路123号华翼府A座2628
版权所有:湖南晨润教育科技有限公司  出版物经营许可证:第4301042021097号

免责说明:本站部分内容由诚为径教育从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。