成人之美,进学有为——学历提升!
您现在的位置:成考频道  > 技巧心得  > [2022年]成人高考高起点数学考前复习资料8(2021年成人高考高起点数学试卷)

[2022年]成人高考高起点数学考前复习资料8(2021年成人高考高起点数学试卷)

来源:     时间:2022年05月16日
分享:

现如今,各行各业对学历的要求越来越高,成人高考也受到了许多人的关注。最近很多人问我2022年成人高考高起点数学考前复习资料8!今天诚为径成考的老师就来给大家详细讲解一下:

2022年成人高考高起点数学考前复习资料8

2022年成人高考高起点数学考前复习资料8

点击查看更多>>成人高考高起点数学考前复习资料

集合思想及应用

集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.

●难点磁场

(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围.

●案例探究

例1设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C= ,证明此结论.

命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题.属★★★★★级题目.

知识依托:解决此题的闪光点是将条件(A∪B)∩C= 转化为A∩C= 且B∩C= ,这样难度就降低了.

错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手.

技巧与方法:由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、k∈N,进而可得值.

解:∵(A∪B)∩C= ,∴A∩C= 且B∩C= ∵ ∴k2x2+(2bk-1)x+b2-1=0

∵A∩C= ∴Δ1=(2bk-1)2-4k2(b2-1)<0

∴4k2-4bk+1<0,此不等式有解,其充要条件是16b2-16>0,即b2>1 ①

∵ ∴4x2+(2-2k)x+(5+2b)=0

∵B∩C= ,∴Δ2=(1-k)2-4(5-2b)<0

∴k2-2k+8b-19<0,从而8b<20,即b<2.5 ②

由①②及b∈N,得b=2代入由Δ1<0和Δ2<0组成的不等式组,得

∴k=1,故存在自然数k=1,b=2,使得(A∪B)∩C= .

例2向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都赞成的学生和都不赞成的学生各有多少人?

命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力.属★★★★级题目.

知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来.

错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.

技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系.

解:赞成A的人数为50× =30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B.

设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为 +1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为33-x.

依题意(30-x)+(33-x)+x+( +1)=50,解得x=21.

所以对A、B都赞成的同学有21人,都不赞成的有8人.

●锦囊妙计

1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题.

2.注意空集 的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A B,则有A= 或A≠ 两种可能,此时应分类讨论.

相关阅读:

2022年成人高考高起点数学(文)真题及答案

2022年成人高考高起点数学(理)真题及答案

以上便是关于2022年成人高考高起点数学考前复习资料8的介绍了,相信对需要成考有需求的同学还是有所帮助的!成考方面还有什么疑问,欢迎跟诚为径成考老师进行咨询,我们会免费的为大家解答疑惑,更有免费的复习资料送给大家!

 

  感谢您阅读[2022年]成人高考高起点数学考前复习资料8(2021年成人高考高起点数学试卷),本文出自:诚为径成考网,转载需带上本文链接地址:https://chengkao.cwjedu.com/jqxd/14771

温馨提示:
因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
课程专业名称 班型 查看课程
成考专升本辅导班(理工类) 全科全程班 试听目录
成考专升本辅导班(法学类) 全科全程班 试听目录
成考高起本辅导班(文科类) 全科全程班 试听目录
成考专升本辅导班(中医药类) 全科全程班 试听目录
成考专升本辅导班(经管/药学类) 全科全程班 试听目录
成考专升本辅导班(医学类) 全科全程班 试听目录
成考专升本辅导班(艺术类) 全科全程班 试听目录
成考高起专辅导班(语数英)(理) 全科全程班 试听目录
成考高起专辅导班(语数英)(文) 全科全程班 试听目录
成考专升本辅导班(农学类) 全科全程班 试听目录
课程专业名称 班型 查看课程
成考专升本艺术概论(精讲班) 课程精讲班 试听目录
成考高升本语文(精讲班) 课程精讲班 试听目录
成考高起专语文(精讲班) 课程精讲班 试听目录
成考专升本-计算机基础 课程精讲班 试听目录
成考高升本英语(精讲班) 课程精讲班 试听目录
成考高升本数学(文)(精讲班) 课程精讲班 试听目录
成考高起专数学(理)(精讲班) 课程精讲班 试听目录
成考高升本数学(理)(精讲班) 课程精讲班 试听目录
成考专升本教育理论(精讲班) 课程精讲班 试听目录
成考专升本政治(精讲班) 课程精讲班 试听目录

学历问题咨询

咨询老师

现如今,各行各业对学历的要求越来越高,成人高考也受到了许多人的关注。最近很多人问我2022年成人高考高起点数学考前复习资料8今天诚为径成考的老师就来给大家详细讲解一下:...

关于我们 联系我们 用户协议 网站地图

联系地址:湖南省长沙市雨花区韶山南路123号华翼府A座2628
版权所有:湖南晨润教育科技有限公司  出版物经营许可证:第4301042021097号

免责说明:本站部分内容由诚为径教育从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。